We were previously issuing both client certs and server certs with
both extended key usages included. Split the Issue*() methods into
separate methods for issuing server certs versus client certs so
they can have different extended key usages tailored for each use
case.
Also took the opportunity to clean up the parameters of the Issue*()
methods and New() methods to more closely match how we prefer to call
them. We were always only passing the common name part of the
pkix.Name to New(), so now the New() method just takes the common name
as a string. When making a server cert, we don't need to set the
deprecated common name field, so remove that param. When making a client
cert, we're always making it in the format expected by the Kube API
server, so just accept the username and group as parameters directly.
To make an impersonation request, first make a TokenCredentialRequest
to get a certificate. That cert will either be issued by the Kube
API server's CA or by a new CA specific to the impersonator. Either
way, you can then make a request to the impersonator and present
that client cert for auth and the impersonator will accept it and
make the impesonation call on your behalf.
The impersonator http handler now borrows some Kube library code
to handle request processing. This will allow us to more closely
mimic the behavior of a real API server, e.g. the client cert
auth will work exactly like the real API server.
Signed-off-by: Monis Khan <mok@vmware.com>
- This commit does not include the updates that we plan to make to
the `status.strategies[].frontend` field of the CredentialIssuer.
That will come in a future commit.
- The CA cert will end up in the end user's kubeconfig on their client
machine, so if it changes they would need to fetch the new one and
update their kubeconfig. Therefore, we should avoid changing it as
much as possible.
- Now the controller writes the CA to a different Secret. It writes both
the cert and the key so it can reuse them to create more TLS
certificates in the future.
- For now, it only needs to make more TLS certificates if the old
TLS cert Secret gets deleted or updated to be invalid. This allows
for manual rotation of the TLS certs by simply deleting the Secret.
In the future, we may want to implement some kind of auto rotation.
- For now, rotation of both the CA and TLS certs will also happen if
you manually delete the CA Secret. However, this would cause the end
users to immediately need to get the new CA into their kubeconfig,
so this is not as elegant as a normal rotation flow where you would
have a window of time where you have more than one CA.
Also update concierge_impersonation_proxy_test.go integration test
to use real TLS when calling the impersonator.
Signed-off-by: Ryan Richard <richardry@vmware.com>
This is a more reliable way to determine whether the load balancer
is already running.
Also added more unit tests for the load balancer.
Signed-off-by: Ryan Richard <richardry@vmware.com>
- Watch a configmap to read the configuration of the impersonation
proxy and reconcile it.
- Implements "auto" mode by querying the API for control plane nodes.
- WIP: does not create a load balancer or proper TLS certificates yet.
Those will come in future commits.
Signed-off-by: Margo Crawford <margaretc@vmware.com>