ContainerImage.Pinniped/internal/oidc/oidc.go

426 lines
19 KiB
Go

// Copyright 2020-2023 the Pinniped contributors. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
// Package oidc contains common OIDC functionality needed by Pinniped.
package oidc
import (
"context"
"crypto/subtle"
"fmt"
"net/http"
"net/url"
"time"
"github.com/felixge/httpsnoop"
"github.com/ory/fosite"
"github.com/ory/fosite/compose"
errorsx "github.com/pkg/errors"
oidcapi "go.pinniped.dev/generated/latest/apis/supervisor/oidc"
"go.pinniped.dev/internal/httputil/httperr"
"go.pinniped.dev/internal/oidc/csrftoken"
"go.pinniped.dev/internal/oidc/jwks"
"go.pinniped.dev/internal/oidc/provider/formposthtml"
"go.pinniped.dev/internal/plog"
"go.pinniped.dev/internal/psession"
"go.pinniped.dev/pkg/oidcclient/nonce"
"go.pinniped.dev/pkg/oidcclient/pkce"
)
const (
WellKnownEndpointPath = "/.well-known/openid-configuration"
AuthorizationEndpointPath = "/oauth2/authorize"
TokenEndpointPath = "/oauth2/token" //nolint:gosec // ignore lint warning that this is a credential
CallbackEndpointPath = "/callback"
JWKSEndpointPath = "/jwks.json"
PinnipedIDPsPathV1Alpha1 = "/v1alpha1/pinniped_identity_providers"
PinnipedLoginPath = "/login"
)
const (
// UpstreamStateParamFormatVersion exists just in case we need to make a breaking change to the format of the
// upstream state param, we are including a format version number. This gives the opportunity for a future version
// of Pinniped to have the consumer of this format decide to reject versions that it doesn't understand.
//
// Version 1 was the original version.
// Version 2 added the UpstreamType field to the UpstreamStateParamData struct.
UpstreamStateParamFormatVersion = "2"
// UpstreamStateParamEncodingName is the `name` passed to the encoder for encoding the upstream state param value.
// This name is short because it will be encoded into the upstream state param value, and we're trying to keep that
// small.
UpstreamStateParamEncodingName = "s"
// CSRFCookieName is the name of the browser cookie which shall hold our CSRF value.
// The `__Host` prefix has a special meaning. See:
// https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#Cookie_prefixes.
CSRFCookieName = "__Host-pinniped-csrf"
// CSRFCookieEncodingName is the `name` passed to the encoder for encoding and decoding the CSRF
// cookie contents.
CSRFCookieEncodingName = "csrf"
// CSRFCookieLifespan is the length of time that the CSRF cookie is valid. After this time, the
// Supervisor's authorization endpoint should give the browser a new CSRF cookie. We set it to
// a week so that it is unlikely to expire during a login.
CSRFCookieLifespan = time.Hour * 24 * 7
)
// Encoder is the encoding side of the securecookie.Codec interface.
type Encoder interface {
Encode(name string, value interface{}) (string, error)
}
// Decoder is the decoding side of the securecookie.Codec interface.
type Decoder interface {
Decode(name, value string, into interface{}) error
}
// Codec is both the encoding and decoding sides of the securecookie.Codec interface. It is
// interface'd here so that we properly wrap the securecookie dependency.
type Codec interface {
Encoder
Decoder
}
// UpstreamStateParamData is the format of the state parameter that we use when we communicate to an
// upstream OIDC provider.
//
// Keep the JSON to a minimal size because the upstream provider could impose size limitations on
// the state param.
type UpstreamStateParamData struct {
AuthParams string `json:"p"`
UpstreamName string `json:"u"`
UpstreamType string `json:"t"`
Nonce nonce.Nonce `json:"n"`
CSRFToken csrftoken.CSRFToken `json:"c"`
PKCECode pkce.Code `json:"k"`
FormatVersion string `json:"v"`
}
type TimeoutsConfiguration struct {
// The length of time that our state param that we encrypt and pass to the upstream OIDC IDP should be considered
// valid. If a state param generated by the authorize endpoint is sent to the callback endpoint after this much
// time has passed, then the callback endpoint should reject it. This allows us to set a limit on how long
// the end user has to finish their login with the upstream IDP, including the time that it takes to fumble
// with password manager and two-factor authenticator apps, and also accounting for taking a coffee break while
// the browser is sitting at the upstream IDP's login page.
UpstreamStateParamLifespan time.Duration
// How long an authcode issued by the callback endpoint is valid. This determines how much time the end user
// has to come back to exchange the authcode for tokens at the token endpoint.
AuthorizeCodeLifespan time.Duration
// The lifetime of an downstream access token issued by the token endpoint. Access tokens should generally
// be fairly short-lived.
AccessTokenLifespan time.Duration
// The lifetime of an downstream ID token issued by the token endpoint. This should generally be the same
// as the AccessTokenLifespan, or longer if it would be useful for the user's proof of identity to be valid
// for longer than their proof of authorization.
IDTokenLifespan time.Duration
// The lifetime of an downstream refresh token issued by the token endpoint. This should generally be
// significantly longer than the access token lifetime, so it can be used to refresh the access token
// multiple times. Once the refresh token expires, the user's session is over and they will need
// to start a new authorization request, which will require them to log in again with the upstream IDP
// in their web browser.
RefreshTokenLifespan time.Duration
// AuthorizationCodeSessionStorageLifetime is the length of time after which an authcode is allowed to be garbage
// collected from storage. Authcodes are kept in storage after they are redeemed to allow the system to mark the
// authcode as already used, so it can reject any future uses of the same authcode with special case handling which
// include revoking the access and refresh tokens associated with the session. Therefore, this should be
// significantly longer than the AuthorizeCodeLifespan, and there is probably no reason to make it longer than
// the sum of the AuthorizeCodeLifespan and the RefreshTokenLifespan.
AuthorizationCodeSessionStorageLifetime time.Duration
// PKCESessionStorageLifetime is the length of time after which PKCE data is allowed to be garbage collected from
// storage. PKCE sessions are closely related to authorization code sessions. After the authcode is successfully
// redeemed, the PKCE session is explicitly deleted. After the authcode expires, the PKCE session is no longer needed,
// but it is not explicitly deleted. Therefore, this can be just slightly longer than the AuthorizeCodeLifespan. We'll
// avoid making it exactly the same as AuthorizeCodeLifespan to avoid any chance of the garbage collector deleting it
// while it is being used.
PKCESessionStorageLifetime time.Duration
// OIDCSessionStorageLifetime is the length of time after which the OIDC session data related to an authcode
// is allowed to be garbage collected from storage. Due to a bug in an underlying library, these are not explicitly
// deleted. Similar to the PKCE session, they are not needed anymore after the corresponding authcode has expired.
// Therefore, this can be just slightly longer than the AuthorizeCodeLifespan. We'll avoid making it exactly the same
// as AuthorizeCodeLifespan to avoid any chance of the garbage collector deleting it while it is being used.
OIDCSessionStorageLifetime time.Duration
// AccessTokenSessionStorageLifetime is the length of time after which an access token's session data is allowed
// to be garbage collected from storage. These must exist in storage for as long as the refresh token is valid
// or else the refresh flow will not work properly. So this must be longer than RefreshTokenLifespan.
AccessTokenSessionStorageLifetime time.Duration
// RefreshTokenSessionStorageLifetime is the length of time after which a refresh token's session data is allowed
// to be garbage collected from storage. These must exist in storage for as long as the refresh token is valid.
// Therefore, this can be just slightly longer than the RefreshTokenLifespan. We'll avoid making it exactly the same
// as RefreshTokenLifespan to avoid any chance of the garbage collector deleting it while it is being used.
// If an expired token is still stored when the user tries to refresh it, then they will get a more specific
// error message telling them that the token is expired, rather than a more generic error that is returned
// when the token does not exist. If this is desirable, then the RefreshTokenSessionStorageLifetime can be made
// to be significantly larger than RefreshTokenLifespan, at the cost of slower cleanup.
RefreshTokenSessionStorageLifetime time.Duration
}
// Get the defaults for the Supervisor server.
func DefaultOIDCTimeoutsConfiguration() TimeoutsConfiguration {
accessTokenLifespan := 2 * time.Minute
authorizationCodeLifespan := 10 * time.Minute
refreshTokenLifespan := 9 * time.Hour
return TimeoutsConfiguration{
UpstreamStateParamLifespan: 90 * time.Minute,
AuthorizeCodeLifespan: authorizationCodeLifespan,
AccessTokenLifespan: accessTokenLifespan,
IDTokenLifespan: accessTokenLifespan,
RefreshTokenLifespan: refreshTokenLifespan,
AuthorizationCodeSessionStorageLifetime: authorizationCodeLifespan + refreshTokenLifespan,
PKCESessionStorageLifetime: authorizationCodeLifespan + (1 * time.Minute),
OIDCSessionStorageLifetime: authorizationCodeLifespan + (1 * time.Minute),
AccessTokenSessionStorageLifetime: refreshTokenLifespan + accessTokenLifespan,
RefreshTokenSessionStorageLifetime: refreshTokenLifespan + accessTokenLifespan,
}
}
func FositeOauth2Helper(
oauthStore interface{},
issuer string,
hmacSecretOfLengthAtLeast32Func func() []byte,
jwksProvider jwks.DynamicJWKSProvider,
timeoutsConfiguration TimeoutsConfiguration,
) fosite.OAuth2Provider {
isRedirectURISecureStrict := func(_ context.Context, uri *url.URL) bool {
return fosite.IsRedirectURISecureStrict(uri)
}
oauthConfig := &fosite.Config{
IDTokenIssuer: issuer,
AuthorizeCodeLifespan: timeoutsConfiguration.AuthorizeCodeLifespan,
IDTokenLifespan: timeoutsConfiguration.IDTokenLifespan,
AccessTokenLifespan: timeoutsConfiguration.AccessTokenLifespan,
RefreshTokenLifespan: timeoutsConfiguration.RefreshTokenLifespan,
ScopeStrategy: fosite.ExactScopeStrategy,
EnforcePKCE: true,
// "offline_access" as per https://openid.net/specs/openid-connect-core-1_0.html#OfflineAccess
RefreshTokenScopes: []string{oidcapi.ScopeOfflineAccess},
// The default is to support all prompt values from the spec.
// See https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
AllowedPromptValues: nil,
// Use the fosite default to make it more likely that off the shelf OIDC clients can work with the supervisor.
MinParameterEntropy: fosite.MinParameterEntropy,
// do not allow custom scheme redirects, only https and http (on loopback)
RedirectSecureChecker: isRedirectURISecureStrict,
// html template for rendering the authorization response when the request has response_mode=form_post
FormPostHTMLTemplate: formposthtml.Template(),
// defaults to using BCrypt when nil
ClientSecretsHasher: nil,
}
oAuth2Provider := compose.Compose(
oauthConfig,
oauthStore,
&compose.CommonStrategy{
// Note that Fosite requires the HMAC secret to be at least 32 bytes.
CoreStrategy: newDynamicOauth2HMACStrategy(oauthConfig, hmacSecretOfLengthAtLeast32Func),
OpenIDConnectTokenStrategy: newDynamicOpenIDConnectECDSAStrategy(oauthConfig, jwksProvider),
},
compose.OAuth2AuthorizeExplicitFactory,
compose.OAuth2RefreshTokenGrantFactory,
compose.OpenIDConnectExplicitFactory,
compose.OpenIDConnectRefreshFactory,
compose.OAuth2PKCEFactory,
TokenExchangeFactory, // handle the "urn:ietf:params:oauth:grant-type:token-exchange" grant type
)
return oAuth2Provider
}
// FositeErrorForLog generates a list of information about the provided Fosite error that can be
// passed to a plog function (e.g., plog.Info()).
//
// Sample usage:
//
// err := someFositeLibraryFunction()
// if err != nil {
// plog.Info("some error", FositeErrorForLog(err)...)
// ...
// }
func FositeErrorForLog(err error) []interface{} {
rfc6749Error := fosite.ErrorToRFC6749Error(err)
keysAndValues := make([]interface{}, 0)
keysAndValues = append(keysAndValues, "name")
keysAndValues = append(keysAndValues, rfc6749Error.Error()) // Error() returns the ErrorField
keysAndValues = append(keysAndValues, "status")
keysAndValues = append(keysAndValues, rfc6749Error.Status()) // Status() encodes the CodeField as a string
keysAndValues = append(keysAndValues, "description")
keysAndValues = append(keysAndValues, rfc6749Error.GetDescription()) // GetDescription() returns the DescriptionField and the HintField
keysAndValues = append(keysAndValues, "debug")
keysAndValues = append(keysAndValues, rfc6749Error.Debug()) // Debug() returns the DebugField
if cause := rfc6749Error.Cause(); cause != nil { // Cause() returns the underlying error, or nil
keysAndValues = append(keysAndValues, "cause")
keysAndValues = append(keysAndValues, cause.Error())
}
return keysAndValues
}
func GrantScopeIfRequested(authorizeRequester fosite.AuthorizeRequester, scopeName string) {
if ScopeWasRequested(authorizeRequester, scopeName) {
authorizeRequester.GrantScope(scopeName)
}
}
func ScopeWasRequested(authorizeRequester fosite.AuthorizeRequester, scopeName string) bool {
for _, scope := range authorizeRequester.GetRequestedScopes() {
if scope == scopeName {
return true
}
}
return false
}
func ReadStateParamAndValidateCSRFCookie(r *http.Request, cookieDecoder Decoder, stateDecoder Decoder) (string, *UpstreamStateParamData, error) {
csrfValue, err := readCSRFCookie(r, cookieDecoder)
if err != nil {
return "", nil, err
}
encodedState, decodedState, err := readStateParam(r, stateDecoder)
if err != nil {
return "", nil, err
}
err = validateCSRFValue(decodedState, csrfValue)
if err != nil {
return "", nil, err
}
return encodedState, decodedState, nil
}
func readCSRFCookie(r *http.Request, cookieDecoder Decoder) (csrftoken.CSRFToken, error) {
receivedCSRFCookie, err := r.Cookie(CSRFCookieName)
if err != nil {
// Error means that the cookie was not found
return "", httperr.Wrap(http.StatusForbidden, "CSRF cookie is missing", err)
}
var csrfFromCookie csrftoken.CSRFToken
err = cookieDecoder.Decode(CSRFCookieEncodingName, receivedCSRFCookie.Value, &csrfFromCookie)
if err != nil {
return "", httperr.Wrap(http.StatusForbidden, "error reading CSRF cookie", err)
}
return csrfFromCookie, nil
}
func readStateParam(r *http.Request, stateDecoder Decoder) (string, *UpstreamStateParamData, error) {
encodedState := r.FormValue("state")
if encodedState == "" {
return "", nil, httperr.New(http.StatusBadRequest, "state param not found")
}
var state UpstreamStateParamData
if err := stateDecoder.Decode(
UpstreamStateParamEncodingName,
r.FormValue("state"),
&state,
); err != nil {
return "", nil, httperr.New(http.StatusBadRequest, "error reading state")
}
if state.FormatVersion != UpstreamStateParamFormatVersion {
return "", nil, httperr.New(http.StatusUnprocessableEntity, "state format version is invalid")
}
return encodedState, &state, nil
}
func validateCSRFValue(state *UpstreamStateParamData, csrfCookieValue csrftoken.CSRFToken) error {
if subtle.ConstantTimeCompare([]byte(state.CSRFToken), []byte(csrfCookieValue)) != 1 {
return httperr.New(http.StatusForbidden, "CSRF value does not match")
}
return nil
}
// WriteAuthorizeError writes an authorization error as it should be returned by the authorization endpoint and other
// similar endpoints that are the end of the downstream authcode flow. Errors responses are written in the usual fosite style.
func WriteAuthorizeError(r *http.Request, w http.ResponseWriter, oauthHelper fosite.OAuth2Provider, authorizeRequester fosite.AuthorizeRequester, err error, isBrowserless bool) {
if plog.Enabled(plog.LevelTrace) {
// When trace level logging is enabled, include the stack trace in the log message.
keysAndValues := FositeErrorForLog(err)
errWithStack := errorsx.WithStack(err)
keysAndValues = append(keysAndValues, "errWithStack")
// klog always prints error values using %s, which does not include stack traces,
// so convert the error to a string which includes the stack trace here.
keysAndValues = append(keysAndValues, fmt.Sprintf("%+v", errWithStack))
plog.Trace("authorize response error", keysAndValues...)
} else {
plog.Info("authorize response error", FositeErrorForLog(err)...)
}
if isBrowserless {
w = rewriteStatusSeeOtherToStatusFoundForBrowserless(w)
}
// Return an error according to OIDC spec 3.1.2.6 (second paragraph).
oauthHelper.WriteAuthorizeError(r.Context(), w, authorizeRequester, err)
}
// PerformAuthcodeRedirect successfully completes a downstream login by creating a session and
// writing the authcode redirect response as it should be returned by the authorization endpoint and other
// similar endpoints that are the end of the downstream authcode flow.
func PerformAuthcodeRedirect(
r *http.Request,
w http.ResponseWriter,
oauthHelper fosite.OAuth2Provider,
authorizeRequester fosite.AuthorizeRequester,
openIDSession *psession.PinnipedSession,
isBrowserless bool,
) {
authorizeResponder, err := oauthHelper.NewAuthorizeResponse(r.Context(), authorizeRequester, openIDSession)
if err != nil {
plog.WarningErr("error while generating and saving authcode", err, "fositeErr", FositeErrorForLog(err))
WriteAuthorizeError(r, w, oauthHelper, authorizeRequester, err, isBrowserless)
return
}
if isBrowserless {
w = rewriteStatusSeeOtherToStatusFoundForBrowserless(w)
}
oauthHelper.WriteAuthorizeResponse(r.Context(), w, authorizeRequester, authorizeResponder)
}
func rewriteStatusSeeOtherToStatusFoundForBrowserless(w http.ResponseWriter) http.ResponseWriter {
// rewrite http.StatusSeeOther to http.StatusFound for backwards compatibility with old pinniped CLIs.
// we can drop this in a few releases once we feel enough time has passed for users to update.
//
// WriteAuthorizeResponse/WriteAuthorizeError calls used to result in http.StatusFound until
// https://github.com/ory/fosite/pull/636 changed it to http.StatusSeeOther to address
// https://tools.ietf.org/id/draft-ietf-oauth-security-topics-18.html#section-4.11
// Safari has the bad behavior in the case of http.StatusFound and not just http.StatusTemporaryRedirect.
//
// in the browserless flows, the OAuth client is the pinniped CLI and it already has access to the user's
// password. Thus there is no security issue with using http.StatusFound vs. http.StatusSeeOther.
return httpsnoop.Wrap(w, httpsnoop.Hooks{
WriteHeader: func(delegate httpsnoop.WriteHeaderFunc) httpsnoop.WriteHeaderFunc {
return func(code int) {
if code == http.StatusSeeOther {
code = http.StatusFound
}
delegate(code)
}
},
})
}