- Discover the revocation endpoint of the upstream provider in
oidc_upstream_watcher.go and save it into the cache for future use
by the garbage collector controller
- Adds RevokeRefreshToken to UpstreamOIDCIdentityProviderI
- Implements the production version of RevokeRefreshToken
- Implements test doubles for RevokeRefreshToken for future use in
garbage collector's unit tests
- Prefactors the crud and session storage types for future use in the
garbage collector controller
- See remaining TODOs in garbage_collector.go
Changes made to both components:
1. Logs are always flushed on process exit
2. Informer cache sync can no longer hang process start up forever
Changes made to concierge:
1. Add pre-shutdown hook that waits for controllers to exit cleanly
2. Informer caches are synced in post-start hook
Changes made to supervisor:
1. Add shutdown code that waits for controllers to exit cleanly
2. Add shutdown code that waits for active connections to become idle
Waiting for controllers to exit cleanly is critical as this allows
the leader election logic to release the lock on exit. This reduces
the time needed for the next leader to be elected.
Signed-off-by: Monis Khan <mok@vmware.com>
The kubelet will send the SIGTERM signal when it wants a process to
exit. After a grace period, it will send the SIGKILL signal to
force the process to terminate. The concierge has always handled
both SIGINT and SIGTERM as indicators for it to gracefully exit
(i.e. stop watches, controllers, etc). This change updates the
supervisor to do the same (previously it only handled SIGINT). This
is required to allow the leader election lock release logic to run.
Otherwise it can take a few minutes for new pods to acquire the
lease since they believe it is already held.
Signed-off-by: Monis Khan <mok@vmware.com>
At a high level, it switches us to a distroless base container image, but that also includes several related bits:
- Add a writable /tmp but make the rest of our filesystems read-only at runtime.
- Condense our main server binaries into a single pinniped-server binary. This saves a bunch of space in
the image due to duplicated library code. The correct behavior is dispatched based on `os.Args[0]`, and
the `pinniped-server` binary is symlinked to `pinniped-concierge` and `pinniped-supervisor`.
- Strip debug symbols from our binaries. These aren't really useful in a distroless image anyway and all the
normal stuff you'd expect to work, such as stack traces, still does.
- Add a separate `pinniped-concierge-kube-cert-agent` binary with "sleep" and "print" functionality instead of
using builtin /bin/sleep and /bin/cat for the kube-cert-agent. This is split from the main server binary
because the loading/init time of the main server binary was too large for the tiny resource footprint we
established in our kube-cert-agent PodSpec. Using a separate binary eliminates this issue and the extra
binary adds only around 1.5MiB of image size.
- Switch the kube-cert-agent code to use a JSON `{"tls.crt": "<b64 cert>", "tls.key": "<b64 key>"}` format.
This is more robust to unexpected input formatting than the old code, which simply concatenated the files
with some extra newlines and split on whitespace.
- Update integration tests that made now-invalid assumptions about the `pinniped-server` image.
Signed-off-by: Matt Moyer <moyerm@vmware.com>