These configuration knobs are much more human-understandable than the
previous percentage-based threshold flag.
We now allow users to set the lifetime of the serving cert via a ConfigMap.
Previously this was hardcoded to 1 year.
Signed-off-by: Andrew Keesler <akeesler@vmware.com>
The rotation is forced by a new controller that deletes the serving cert
secret, as other controllers will see this deletion and ensure that a new
serving cert is created.
Note that the integration tests now have an addition worst case runtime of
60 seconds. This is because of the way that the aggregated API server code
reloads certificates. We will fix this in a future story. Then, the
integration tests should hopefully get much faster.
Signed-off-by: Andrew Keesler <akeesler@vmware.com>
This switches us back to an approach where we use the Pod "exec" API to grab the keys we need, rather than forcing our code to run on the control plane node. It will help us fail gracefully (or dynamically switch to alternate implementations) when the cluster is not self-hosted.
Signed-off-by: Matt Moyer <moyerm@vmware.com>
Co-authored-by: Ryan Richard <richardry@vmware.com>
- Add a unit test for each cert controller
- Make DynamicTLSServingCertProvider an interface and use a mutex
internally
- Create a shared ToPEM function instead of having two very similar
functions
- Move the ObservableWithInformerOption test helper to testutils
- Rename some variables and imports
- Refactors the existing cert generation code into controllers
which read and write a Secret containing the certs
- Does not add any new functionality yet, e.g. no new handling
for cert expiration, and no leader election to allow for
multiple servers running simultaneously
- This commit also doesn't add new tests for the cert generation
code, but it should be more unit testable now as controllers
- No functional changes
- Move all the stuff about clients and controllers into the controller
package
- Add more comments and organize the code more into more helper
functions to make each function smaller
- Previously the golang code would create a Service and an APIService.
The APIService would be given an owner reference which pointed to
the namespace in which the app was installed.
- This prevented the app from being uninstalled. The namespace would
refuse to delete, so `kapp delete` or `kubectl delete` would fail.
- The new approach is to statically define the Service and an APIService
in the deployment.yaml, except for the caBundle of the APIService.
Then the golang code will perform an update to add the caBundle at
runtime.
- When the user uses `kapp deploy` or `kubectl apply` either tool will
notice that the caBundle is not declared in the yaml and will
therefore avoid editing that field.
- When the user uses `kapp delete` or `kubectl delete` either tool will
destroy the objects because they are statically declared with names
in the yaml, just like all of the other objects. There are no
ownerReferences used, so nothing should prevent the namespace from
being deleted.
- This approach also allows us to have less golang code to maintain.
- In the future, if our golang controllers want to dynamically add
an Ingress or other objects, they can still do that. An Ingress
would point to our statically defined Service as its backend.
Signed-off-by: Andrew Keesler <akeesler@vmware.com>
Signed-off-by: Andrew Keesler <akeesler@vmware.com>
- Seems like the next step is to allow override of the CA bundle; I didn't
do that here for simplicity of the commit, but seems like it is the right
thing to do in the future.
- Also includes bumping the api and client-go dependencies to the newer
version which also moved LoginDiscoveryConfig to the
crds.placeholder.suzerain-io.github.io group in the generated code