- The ldap_upstream_watcher.go controller validates the bind secret and
uses the Conditions to report errors. Shares some condition reporting
logic with its sibling controller oidc_upstream_watcher.go, to the
extent which is convenient without generics in golang.
- When the upstream IDP is an LDAP IDP and the user's LDAP username and
password are received as new custom headers, then authenticate the
user and, if authentication was successful, return a redirect with
an authcode. Handle errors according to the OAuth/OIDC specs.
- Still does not support having multiple upstream IDPs defined at the
same time, which was an existing limitation of this endpoint.
- Does not yet include the actual LDAP authentication, which is
hidden behind an interface from the point of view of auth_handler.go
- Move the oidctestutil package to the testutil directory.
- Add an interface for Fosite storage to avoid a cyclical test
dependency.
- Add GetURL() to the UpstreamLDAPIdentityProviderI interface.
- Extract test helpers to be shared between callback_handler_test.go
and auth_handler_test.go because the authcode and fosite storage
assertions should be identical.
- Backfill Content-Type assertions in callback_handler_test.go.
Signed-off-by: Andrew Keesler <akeesler@vmware.com>
We were previously issuing both client certs and server certs with
both extended key usages included. Split the Issue*() methods into
separate methods for issuing server certs versus client certs so
they can have different extended key usages tailored for each use
case.
Also took the opportunity to clean up the parameters of the Issue*()
methods and New() methods to more closely match how we prefer to call
them. We were always only passing the common name part of the
pkix.Name to New(), so now the New() method just takes the common name
as a string. When making a server cert, we don't need to set the
deprecated common name field, so remove that param. When making a client
cert, we're always making it in the format expected by the Kube API
server, so just accept the username and group as parameters directly.
To make an impersonation request, first make a TokenCredentialRequest
to get a certificate. That cert will either be issued by the Kube
API server's CA or by a new CA specific to the impersonator. Either
way, you can then make a request to the impersonator and present
that client cert for auth and the impersonator will accept it and
make the impesonation call on your behalf.
The impersonator http handler now borrows some Kube library code
to handle request processing. This will allow us to more closely
mimic the behavior of a real API server, e.g. the client cert
auth will work exactly like the real API server.
Signed-off-by: Monis Khan <mok@vmware.com>
All controller unit tests were accidentally using a timeout context
for the informers, instead of a cancel context which stays alive until
each test is completely finished. There is no reason to risk
unpredictable behavior of a timeout being reached during an individual
test, even though with the previous 3 second timeout it could only be
reached on a machine which is running orders of magnitude slower than
usual, since each test usually runs in about 100-300 ms. Unfortunately,
sometimes our CI workers might get that slow.
This sparked a review of other usages of timeout contexts in other
tests, and all of them were increased to a minimum value of 1 minute,
under the rule of thumb that our tests will be more reliable on slow
machines if they "pass fast and fail slow".
In impersonator_config_test.go, instead of waiting for the resource
version to appear in the informers, wait for the actual object to
appear.
This is an attempt to resolve flaky failures that only happen in CI,
but it also cleans up the test a bit by avoiding inventing fake resource
version numbers all over the test.
Signed-off-by: Monis Khan <mok@vmware.com>
- Use `Eventually` when making tls connections because the production
code's handling of starting and stopping the TLS server port
has some async behavior.
- Don't use resource version "0" because that has special meaning
in the informer libraries.
This updates our issuerconfig.UpdateStrategy to sort strategies according to a weighted preference.
The TokenCredentialRequest API strategy is preffered, followed by impersonation proxy, followed by any other unknown types.
Signed-off-by: Matt Moyer <moyerm@vmware.com>
- This commit does not include the updates that we plan to make to
the `status.strategies[].frontend` field of the CredentialIssuer.
That will come in a future commit.
This is more than an automatic merge. It also includes a rewrite of the CredentialIssuer API impersonation proxy fields using the new structure, and updates to the CLI to account for that new API.
Signed-off-by: Matt Moyer <moyerm@vmware.com>
These controllers were a bit inconsistent. There were cases where the controllers ran out of the expected order and the custom labels might not have been applied.
We should still plan to remove this label handling or move responsibility into the middleware layer, but this avoids any regression.
Signed-off-by: Matt Moyer <moyerm@vmware.com>
- The CA cert will end up in the end user's kubeconfig on their client
machine, so if it changes they would need to fetch the new one and
update their kubeconfig. Therefore, we should avoid changing it as
much as possible.
- Now the controller writes the CA to a different Secret. It writes both
the cert and the key so it can reuse them to create more TLS
certificates in the future.
- For now, it only needs to make more TLS certificates if the old
TLS cert Secret gets deleted or updated to be invalid. This allows
for manual rotation of the TLS certs by simply deleting the Secret.
In the future, we may want to implement some kind of auto rotation.
- For now, rotation of both the CA and TLS certs will also happen if
you manually delete the CA Secret. However, this would cause the end
users to immediately need to get the new CA into their kubeconfig,
so this is not as elegant as a normal rotation flow where you would
have a window of time where you have more than one CA.
Also update concierge_impersonation_proxy_test.go integration test
to use real TLS when calling the impersonator.
Signed-off-by: Ryan Richard <richardry@vmware.com>
These are prone to breaking when stdr is upgraded because they rely on the exact ordering of keys in the log message. If we have more problems we can rewrite the assertions to be more robust, but for this time I'm just fixing them to match the new output.
Signed-off-by: Matt Moyer <moyerm@vmware.com>
This is a more reliable way to determine whether the load balancer
is already running.
Also added more unit tests for the load balancer.
Signed-off-by: Ryan Richard <richardry@vmware.com>
- Watch a configmap to read the configuration of the impersonation
proxy and reconcile it.
- Implements "auto" mode by querying the API for control plane nodes.
- WIP: does not create a load balancer or proper TLS certificates yet.
Those will come in future commits.
Signed-off-by: Margo Crawford <margaretc@vmware.com>
When the Pinniped server has been installed with the `api_group_suffix`
option, for example using `mysuffix.com`, then clients who would like to
submit a `TokenCredentialRequest` to the server should set the
`Spec.Authenticator.APIGroup` field as `authentication.concierge.mysuffix.com`.
This makes more sense from the client's point of view than using the
default `authentication.concierge.pinniped.dev` because
`authentication.concierge.mysuffix.com` is the name of the API group
that they can observe their cluster and `authentication.concierge.pinniped.dev`
does not exist as an API group on their cluster.
This commit includes both the client and server-side changes to make
this work, as well as integration test updates.
Co-authored-by: Andrew Keesler <akeesler@vmware.com>
Co-authored-by: Ryan Richard <richardry@vmware.com>
Co-authored-by: Margo Crawford <margaretc@vmware.com>
Yes, this is a huge commit.
The middleware allows you to customize the API groups of all of the
*.pinniped.dev API groups.
Some notes about other small things in this commit:
- We removed the internal/client package in favor of pkg/conciergeclient. The
two packages do basically the same thing. I don't think we use the former
anymore.
- We re-enabled cluster-scoped owner assertions in the integration tests.
This code was added in internal/ownerref. See a0546942 for when this
assertion was removed.
- Note: the middlware code is in charge of restoring the GV of a request object,
so we should never need to write mutations that do that.
- We updated the supervisor secret generation to no longer manually set an owner
reference to the deployment since the middleware code now does this. I think we
still need some way to make an initial event for the secret generator
controller, which involves knowing the namespace and the name of the generated
secret, so I still wired the deployment through. We could use a namespace/name
tuple here, but I was lazy.
Signed-off-by: Andrew Keesler <akeesler@vmware.com>
Co-authored-by: Ryan Richard <richardry@vmware.com>
This change updates our clients to always set an owner ref when:
1. The operation is a create
2. The object does not already have an owner ref set
Signed-off-by: Monis Khan <mok@vmware.com>
- JWKSWriterController
- JWKSObserverController
- FederationDomainSecretsController for HMAC keys
- FederationDomainSecretsController for state signature key
- FederationDomainSecretsController for state encryption key
Signed-off-by: Ryan Richard <richardry@vmware.com>
- Only sync on add/update of secrets in the same namespace which
have the "storage.pinniped.dev/garbage-collect-after" annotation, and
also during a full resync of the informer whenever secrets in the
same namespace with that annotation exist.
- Ignore deleted secrets to avoid having this controller trigger itself
unnecessarily when it deletes a secret. This controller is never
interested in deleted secrets, since its only job is to delete
existing secrets.
- No change to the self-imposed rate limit logic. That still applies
because secrets with this annotation will be created and updated
regularly while the system is running (not just during rare system
configuration steps).
This implementation is janky because I wanted to make the smallest change
possible to try to get the code back to stable so we can release.
Also deep copy an object so we aren't mutating the cache.
Signed-off-by: Andrew Keesler <akeesler@vmware.com>
Because the library that we are using which returns that error
formats the timestamp in localtime, which is LMT when running
on a laptop, but is UTC when running in CI.
Signed-off-by: Ryan Richard <richardry@vmware.com>
- Refactor the test to avoid testing a private method and instead
always test the results of running the controller.
- Also remove the `if testing.Short()` check because it will always
be short when running unit tests. This prevented the unit test
from ever running, both locally and in CI.
Signed-off-by: Ryan Richard <richardry@vmware.com>