- Use camel-case in the static configmap
- Parse the value into a boolean in the go struct instead of a string
- Add test for when unsupported value is used in the configmap
- Run the config_test.go tests in parallel
- Update some paragraphs in configure-supervisor.md for clarity
Add new deprecated_insecure_accept_external_unencrypted_http_requests
value in values.yaml. Allow it to be a boolean or a string to make it
easier to use (both --data-value and --data-value-yaml will work).
Also:
- Consider "ip6-localhost" and "ip6-loopback" to be loopback addresses
for the validation
- Remove unused env.SupervisorHTTPAddress var
- Deprecate the `service_http_*` values in values.yaml by renaming them
and causing a ytt render error when the old names are used
- Note that v0.8.0 no longer supports the "trivialVersions=true"
command-line option, so remove that from update-codegen.sh.
It doesn't seem to impact the output (our generated CRD yaml files).
This change allows configuration of the http and https listeners
used by the supervisor.
TCP (IPv4 and IPv6 with any interface and port) and Unix domain
socket based listeners are supported. Listeners may also be
disabled.
Binding the http listener to TCP addresses other than 127.0.0.1 or
::1 is deprecated.
The deployment now uses https health checks. The supervisor is
always able to complete a TLS connection with the use of a bootstrap
certificate that is signed by an in-memory certificate authority.
To support sidecar containers used by service meshes, Unix domain
socket based listeners include ACLs that allow writes to the socket
file from any runAsUser specified in the pod's containers.
Signed-off-by: Monis Khan <mok@vmware.com>
This makes it so that our service selector will match exactly the
YAML we specify instead of including an extra "kapp.k14s.io/app" key.
This will take us closer to the standard kubectl behavior which is
desirable since we want to avoid future bugs that only manifest when
kapp is not used.
Signed-off-by: Monis Khan <mok@vmware.com>
Fixes#801. The solution is complicated by the fact that the Selector
field of Deployments is immutable. It would have been easy to just
make the Selectors of the main Concierge Deployment, the Kube cert agent
Deployment, and the various Services use more specific labels, but
that would break upgrades. Instead, we make the Pod template labels and
the Service selectors more specific, because those not immutable, and
then handle the Deployment selectors in a special way.
For the main Concierge and Supervisor Deployments, we cannot change
their selectors, so they remain "app: app_name", and we make other
changes to ensure that only the intended pods are selected. We keep the
original "app" label on those pods and remove the "app" label from the
pods of the Kube cert agent Deployment. By removing it from the Kube
cert agent pods, there is no longer any chance that they will
accidentally get selected by the main Concierge Deployment.
For the Kube cert agent Deployment, we can change the immutable selector
by deleting and recreating the Deployment. The new selector uses only
the unique label that has always been applied to the pods of that
deployment. Upon recreation, these pods no longer have the "app" label,
so they will not be selected by the main Concierge Deployment's
selector.
The selector of all Services have been updated to use new labels to
more specifically target the intended pods. For the Concierge Services,
this will prevent them from accidentally including the Kube cert agent
pods. For the Supervisor Services, we follow the same convention just
to be consistent and to help future-proof the Supervisor app in case it
ever has a second Deployment added to it.
The selector of the auto-created impersonation proxy Service was
also previously using the "app" label. There is no change to this
Service because that label will now select the correct pods, since
the Kube cert agent pods no longer have that label. It would be possible
to update that selector to use the new more specific label, but then we
would need to invent a way to pass that label into the controller, so
it seemed like more work than was justified.
These fields were changed as a minor hardening attempt when we switched to Distroless, but I bungled the field names and we never noticed because Kapp doesn't apply API validations.
This change fixes the field names so they act as was originally intended. We should also follow up with a change that validates all of our installation manifest in CI.
Signed-off-by: Matt Moyer <moyerm@vmware.com>
- Change list of attributeParsingOverrides to a map
- Add unit test for sAMAccountName as group name without the override
- Change some comments in the the type definition.
This change updates the default NO_PROXY for the supervisor to not
proxy requests to the Kubernetes API and other Kubernetes endpoints
such as Kubernetes services.
It also adds https_proxy and no_proxy settings for the concierge
with the same default.
Signed-off-by: Monis Khan <mok@vmware.com>
- Add `AllowPasswordGrant` boolean field to OIDCIdentityProvider's spec
- The oidc upstream watcher controller copies the value of
`AllowPasswordGrant` into the configuration of the cached provider
- Add password grant to the UpstreamOIDCIdentityProviderI interface
which is implemented by the cached provider instance for use in the
authorization endpoint
- Enhance the IDP discovery endpoint to return the supported "flows"
for each IDP ("cli_password" and/or "browser_authcode")
- Enhance `pinniped get kubeconfig` to help the user choose the desired
flow for the selected IDP, and to write the flow into the resulting
kubeconfg
- Enhance `pinniped login oidc` to have a flow flag to tell it which
client-side flow it should use for auth (CLI-based or browser-based)
- In the Dex config, allow the resource owner password grant, which Dex
implements to also return ID tokens, for use in integration tests
- Enhance the authorize endpoint to perform password grant when
requested by the incoming headers. This commit does not include unit
tests for the enhancements to the authorize endpoint, which will come
in the next commit
- Extract some shared helpers from the callback endpoint to share the
code with the authorize endpoint
- Add new integration tests
At a high level, it switches us to a distroless base container image, but that also includes several related bits:
- Add a writable /tmp but make the rest of our filesystems read-only at runtime.
- Condense our main server binaries into a single pinniped-server binary. This saves a bunch of space in
the image due to duplicated library code. The correct behavior is dispatched based on `os.Args[0]`, and
the `pinniped-server` binary is symlinked to `pinniped-concierge` and `pinniped-supervisor`.
- Strip debug symbols from our binaries. These aren't really useful in a distroless image anyway and all the
normal stuff you'd expect to work, such as stack traces, still does.
- Add a separate `pinniped-concierge-kube-cert-agent` binary with "sleep" and "print" functionality instead of
using builtin /bin/sleep and /bin/cat for the kube-cert-agent. This is split from the main server binary
because the loading/init time of the main server binary was too large for the tiny resource footprint we
established in our kube-cert-agent PodSpec. Using a separate binary eliminates this issue and the extra
binary adds only around 1.5MiB of image size.
- Switch the kube-cert-agent code to use a JSON `{"tls.crt": "<b64 cert>", "tls.key": "<b64 key>"}` format.
This is more robust to unexpected input formatting than the old code, which simply concatenated the files
with some extra newlines and split on whitespace.
- Update integration tests that made now-invalid assumptions about the `pinniped-server` image.
Signed-off-by: Matt Moyer <moyerm@vmware.com>
- Add new optional ytt params for the Supervisor deployment.
- When the Supervisor is making calls to an upstream OIDC provider,
use these variables if they were provided.
- These settings are integration tested in the main CI pipeline by
sometimes setting them on deployments in certain cases, and then
letting the existing integration tests (e.g. TestE2EFullIntegration)
provide the coverage, so there are no explicit changes to the
integration tests themselves in this commit.
Reflect the upstream group membership into the Supervisor's
downstream tokens, so they can be added to the user's
identity on the workload clusters.
LDAP group search is configurable on the
LDAPIdentityProvider resource.
Also force the LDAP server pod to restart whenever the LDIF file
changes, so whenever you redeploy the tools deployment with a new test
user password the server will be updated.
- The unit tests for upstreamldap.Provider need to mock the LDAP server,
so add an integration test which allows us to get fast feedback for
this code against a real LDAP server.
- Automatically wrap the user search filter in parenthesis if it is not
already wrapped in parens.
- More special handling for using "dn" as the username or UID attribute
name.
- Also added some more comments to types_ldapidentityprovider.go.tmpl
- The ldap_upstream_watcher.go controller validates the bind secret and
uses the Conditions to report errors. Shares some condition reporting
logic with its sibling controller oidc_upstream_watcher.go, to the
extent which is convenient without generics in golang.